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I N C R E M E N T A L  D E F O R M A T I O N  M O D E L  F O R  A S H E L L  

L. I. S h k u t i n  UDC 539.370 

A nonlinear deformation model for a shell with rigid transverse fibers is proposed. A complete 
system of incremental equations, a variational equation equivalent to this system, and a 
particular equation of virtual work are formulated. Numerical analysis of the nonlinear 
deformation of a spherical dome is performed using the complete equation. 

1. E q u a t i o n s  of  F i n i t e  D e f o r m a t i o n  of  a Shell .  We consider a shell as a body in three-dimensional 
Cartesian space. The shell material is distributed over a small neighborhood G of a certain (base) surface 
A C G. A system of curvilinear coordinates t j  is attached to this surface in such a manner  that tl and t2 
are internal parameters  of the surface, and t3 is the normal (transverse) coordinate (ti E A and t3 e [hi, h2], 
where hi is a real number).  

In this paper,  we use the notation adopted in [1]. Variations of the deformation parameters are denoted 
by the symbol 5 and the desired and specified increments are denoted by the symbol A. The capital Latin 
subscripts and superscripts take values 1, 2, and 3, and the lower-case Latin subscripts and superscripts take 
values 1 and 2. Summation is performed over repeated subscripts. The possible dependence on time is not 
indicated explicitly. 

In the three-dimensional space above G, we define the position vector g( t j  E G) of an arbitrary point 
of the shell, the position vector a( t j  E A) of an arbitrary point on the base surface, and the local coordinate 
basis a j (a )  related to points on the surface and consisting of the tangent vectors a l  and a2 and the normal 
vector a3. 

The shell is defined by the relations g = a + taa3. The equalities g j  = Ojg, ga = a3, gi = ai + t3bi, 
ai =- Oia, and bi - Oia3 (Oj denotes differentiation with respect to t j )  introduce the body basis gj (g)  of the 
coordinate system and express this basis in terms of the contour basis aj (a) .  

Deformation of the slaell into a certain finite state is represented by the mapping g ---* g+(g),  g j  --* 
+ + a+(a) and gj (g ) ,  and g j  - Ojg +. The base surface and its basis deform together with the shell: a 

a j  ~ a-~(a). The local orthogonal transformation 

a~ = { 9 . a  j ,  03{D --- 0, {9. O - 1 (1.1) 

with the rotation tensor {9(a) introduces, on the deformed surface, a convective basis a~ with initial value 
a j ( a ) .  Henceforth, this basis is assumed to be the determining basis for the vector spaces above G and A. 
Transformation (1.1) is represented in the form transposed with respect to that in [1], which is more customary 
in matrix calculus. 

The deformed state of the shell is described by the equation 

g+ = a + + t3a ~ (1.2) 

This implies the  equalities g+ = a + = a~, which identify the deformed transverse vector with the convective 
t) 0 do not coincide with each other and the convective vector a i vector. Generally, the vectors g+,  a +, and a i 

is not tangent to the base surface. 
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Equation (1.2) corresponds to the linear approximation of the body displacement field w ( g )  =_ g+ - g  
with respect to the transverse coordinate: 

w = u + t 3 v ,  u - -  a + - -  a ,  v = a ~ - -  a 3 .  (1.3) 

This relation specifies rigid-body motion of a transverse fiber of the shell with translational displacement u(a)  
and rotation t3v(a).  

The body strain field of the shell is defined by the vectors wt(g) :  

Wl =- g +  - O " g I  = a l W  - (O - 1) " g I "  (1.4) 

Using approximations (1.2) and (1.3), we arrive at the equalities 

wi  = ui  q- t3vi, w3 =--- O, (1.5) 

which express the body field in terms of the surface vectors ui (a)  and vi(a)  of metric and flexural-torsional 
strains: 

u i = a + - | 1 7 4  a + = O i a  +, 
(1.6) 

vi =- b + - O .  bi = OiO" a3, b + =--. Oi aO. 

Formulas (1.6) define these vectors in terms of primary unknowns - -  the displacement vector u(a )  and the 
rotation tensor O(a) .  

For a deformed state, the local dynamic equations 

�9 = " ~li y i  (1.7) V i Z '  -}- p = O, Vi~l i + ~ + ~t O, 5: = a + X x ' ,  = a ~ x 

hold on A (Vi denotes covariant differentiation with respect to the initial surface basis a j) .  
If, on a segment Ca of the base surface, the contour forces and moments are specified by the vectors 

P3 and q3, the dynamic conditions 

e3ixi - -  P 3  ---- O ,  e3i~l i -- q3 = 0 (1.8) 

are satisfied on this segment. On a segment C u with specified displacement vector u u and | rotation tensor, 
the following kinematic conditions hold: 

u = u u ,  0 = 0 u .  (1.9) 

The unknown vector functions x i (a )  and yi(a)  in Eqs. (1.7) are the mathematical  moments  of the 
stress vector zi(g)  along the transverse coordinate: 

h2 h2 

x'- J zidGIdA, Y'- i z%dGIdA. 
hi hl 

(1.10) 

The functions x i (a )  and ~li(a) have the meaning of mechanical forces and the moments. 
In the general problem of the finite deformation of a shell, the dynamic equations (1.7) and (1.8) 

are combined with the kinematic equations (1.6) and (1.9) and constitutive relations between the dynamic 
vectors a: i and yi and the kinematic vectors ui and vi. A finite formulation of these relations is possible 
only in particular cases. An incremental formulation is more general. This naturally leads to the necessity of 
constructing an incremental deformation model for the shell. 

2. F o r m u l a t i o n  o f  Local  E q u a t i o n s  o f  t h e  M o d e l .  In formulating the incremental equations of 
deformation for the shell, we use the following variation rules for vector and tensor fields: 

, e=5a.e, 5 a = S w x l = l x 6 w ,  5a~176176 5a+=aiSu, (2.1) 

5ou ,  = 0,5  - . a t  = - 6 xa+, 5 o r ,  = a sa . ,,03 = a,5 • ~ = 5 xa ~ 

Here 5~t(a) and 5w(a) are the spin and vector of virtual rotation, and 50 is the relative variation operator 
such that 50a~ - 0 and for any vector v specified in the convective basis, the equalities 

5v = ~ov + 512. v = 5oV + 5w x v (2.2) 
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hold by definition. Formulas (2.1) contain two primary virtual vectors t~u and 3v. Tile second vector has only 
two components in the convective basis since as ~ �9 8v = 0. The last equality in (2.1) expresses this vector in 
terms of the free vector of virtual rotation. In order that  this expression be one-to-one, it suffices to eliminate 
the "drilling" component of the vector 6w by the trivial condition 3ws -= 3w �9 a ~ = 0. Therefore, the three- 
component vector ~u and the two-component vector ~w can be regarded as the primary unknowns. In vector 
products, the second vector can be replaced by the spin tensor ~f~. 

Using (1.7), we obtain the following incremental dynamic equations on A: 

V i A x  i + A p  = O, V i A f l  i + A5: + A~ = 0- (2.3) 

These are supplemented by the following dynamic and kinematic conditions on the contour segments Ca 
and Cu: 

e3i /k~ i -- Ap3 = O, e3 iA f t  i - -  A~3 = O; (2.4) 

A u  = Auu,  Aw = Awl, .  (2.5) 

The dynamic variables are related to the kinematic variables by constitutive relations. For purely 
mechanical processes of elastic and elastoplastic deformation in the region G, these can be expressed by the 
equation 

AO zi  = D ij �9 A o w j ,  (2.6) 

where A0 is the relative increment operator defined similarly to g0 and D ij are the dyadic tensors of the 
material stiffness that take the loading prehistory into account. 

From (1.10) and (2.6) we obtain the following constitutive relations on A for the surface variables: 

Aox  i = E~ j " A o u j  + E ;  j " A o v j ,  zXoy i = E ;  j " AOuj + E~ j . A o v j  (2.7) 

with the generalized stiffness tensors 
h2 

ij / -1 E N  =_ D i J t  N d G  
dA" 

hi 

The vectors Aoui  and Aovi  in (2.7) are calculated according to the variation rules (2.1): 

Aou i  = OiAu -- A a .  a + = OiAu -- /kw x a +, Aov i  = O i A a  . a 0 = O i A w x a  O. (2.8) 

Using (2.8) and the equality A0fr i = a~xA0y i, which is valid by definition, we bring Eqs. (2.7) to the form 

E'J (OjA,,-ZXa a+)+ F J.OjzX,,,, ZXoO'=a J.(oj x ,-zxa ,,+)+ H'J.O,/X,o (2.9/ 

with the modified stiffness tensors 
�9 r ,  i j  0 ij " E'J - F'J =_ • G'J =_ H'J = 

Henceforth, we assume that relations (2.9) admit the inversion 

OiAu -- A f t .  a + = E i j  " Ao  •j 'k ~"ij " Aof I  j ,  O i A w  = V i i  " A0 a~j + I-'Iij " Ao~I j (2.10) 

with the known compliance t e n s o r s  E i j ,  igij ,  V i i ,  a n d  .~'Iij. 
Equations (2.3)-(2.5) and (2.9) or (2.10) form a complete system of local equations for the incremental 

deformation model for a shell. 
3. Var ia t iona l  F o r m u l a t i o n  of t he  P r o b l e m .  In the functional space L2(A), we introduce arbitrary 

variations 6u, 3w, ~z ~, and Sy~ of the kinematic and dynamic vectors. The local equations (2.3)-(2.5) and 
(2.10) are replaced by the Galerkin integral equality 

f ((OiAa~ i + A p ) .  ~Su + (OiAft  i + A ~  + A~I). ~Sw) dA 

A 

+ f ( E i j  �9 j +  'ij. A o f / -  OiAu + A a .  a + ) .  6,, i dA 

A 
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/ ( Vi j  " io~.J + I - I i j  " /kO~l j - -  O i i ~ o )  " ~ l  i dA + j ( ( Apz - e3iAzi) . 3u + (AO3 -e3iA~t i) . ~w) dC + 

A CA 

+ / e3i((Au - Aut, ) �9 3 x i +  (Aw - Aw,) -3f t i )dC = O. (3.1) 
c ,  

After integration of the first integral by parts, equality (3.1) takes the form 

( A p .  -- + (A~ + A5~)- - Oi6w) ~ u  A ~  ~ . O~6u ~w A f~. dA 
A 

+/(F-~ij" AO Zj "}- ~'ij" z2kOft j -- Oi f u  "+ A a .  a~) .  ~ i  dA + f (Gii" Aoz j + ~Ii j .  z2xo~l j - OiA~) - ~t  idA 
A A 

+ / ( A p 3  "6~ Jr- Aq3 . ~ ) d C  + / e3i( fx  i "3 .  "a t- /~0 i ~ ~ dC 

c~ c~, 

+ / ( (Au - Aut, ) �9 ~z i + (Aw - Awu) .  6~t i) dC = 0. (3.2) 
c ,  

This form requires the smoothness of the variation 6u and 6o; above the base surface. 
When the integrands are sufficiently smooth, the variational equalities (3.1) and (3.2) are equivalent 

and, hence, the following statement is valid. 
S t a t e m e n t .  If the vectors A z  i, A~I i, Au ,  and Aw are an exact solution of the system o/local equations 

(2.3)-(2.5) and (2.10), the integral equality (3.2) holds for any variations; if certain vectors A z  i, A~t i, Au,  
and Aw identically satisfy equality (3.2) for any variations, these vectors are an exact solution of the above- 
mentioned system. 

When the desired integrands are insufficiently smooth, the variational equation (3.2) gives a weak 
formulation of the incremental problem. In this Galerkin formulation, the smoothness requirements are 
minimal: the vectors A x  i, All i, 5x i, and 6~i are elements of the Hilbert space L2(A) and the vectors Au, 
Ace, 6u, and 6w are elements of the Sobolev space W~(A). 

An important corollary of (3.2) is the equation of the virtual work of the shell: 

f ( A p . 6 u - A z i . O i 6 u + ( A g t + A i e ) . 6 w - A ~ t i . O i 6 w ) d A +  / ( A p 3 . 3 u + A O 3 . 6 w ) d C = O .  (3.3) 

A C A 

It is valid for kinematically possible variations 6u and 6w such that 6u = 6w = 0 on the contour Cu and 
the local equations (2.10) and boundary conditions (2.5) are satisfied. Equality (3.3) gives a weak form of the 
dynamic equations (2.3) and the contour conditions (2.4). When the variables A x  i and A~t i are eliminated 
from Eq. (3.3) using equalities (2.9), Eq. (3.3) takes the meaning of a weak formulation of the problem relative 
to the kinematic variables A u  and Aw with the principal contour conditions (2.5). 

The matrix formulation of the variational equation (3.2) required for numerical analysis is obtained by 
decomposing the desired vector function Au,  Aw, A0z i, and A0~ i in the convective basis a}: 

A u : a ~  J, A w = a ~  J, A0z i = a ~  i J, AoO i = a ~  iJ. 

Similar decompositions are used for the variations 6u, 6w, 6x i, and 6~ i. The increment of any vector v = 
a~ J that is different from the primary vectors is calculated similarly to (2.2): Av = A0v + A12 �9 v. Here 
A0v -= a~ J is the relative increment and A ~  is the spin of the rotation vector increment. 

Differentiation of the convective-basis vectors can be expressed by the transformation 

Oi a ~ = C ~ . a ~ C ~ =_ ( Oia ~ )a Jo 

with the spin tensor C~ Any vector v(a) specified in the convective basis is differentiated by the formula 

o, , ,  = 0 %  + ,,, o~ = 
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Fig. 1 

where 0% is the relative derivative of the vector with respect to ti. The definition of the tensor C O leads to 
the formula A0C ~ = OiAf~ for its relative increment. 

The above variation and differentiation rules for vector fields are used to obtain the matrix form of 
the variational equation (3.2). Moreover, the relative increments and derivatives of the vectors are the basis 
functions in the equation since they are represented by matrices of increments of the vector components. 

To calculate the desired functions, we employ the standard procedure of successive approximations, 
which allows one to trace the process of deformation of the shell step by step from the initial (unstressed) 
state to the final state corresponding to specified external forces. The initial values of the parameters are 
specified by the equalities a~  = a } = a0,, b + = bi =- Oia3, C O = Ci =- (Oiaj)a J, O - 1, and x i = ~i = 
P = q = P3 -- qa = 0. Initially, each material stiffness tensor D ij is given by the general Hooke's matrix. 
If it depends on strains, in the next step, it is introduced by the matrix [D ij -t- AoDii], where Ao Dij is the 
relative increment of tile tensor that corresponds to the increments of the primary vectors. 

The body strain and stress fields in the shell are determined according the procedure outlined in [2, 3]. 
4. N u m e r i c a l  Ana lys i s  of  t h e  D e f o r m a t i o n  of  a Spher i ca l  D o m e .  The variational equation 

(3.2) was used to analyze the finite elastic deformation of a spherical dome loaded by a ring force Q at an 
angle of 45 ~ to the supporting plane (Fig. 1). A linear finite-element approximation of the integrands was 
used. Point action was specified by an U-shaped function on the cell length. The dimensions of the dome and 
the elastic properties of the material were specified by radius b = 5 m, ratio b/h = 100, Young's modulus 
D = 104 k N / m  2, and Poisson's ratio ~, = 0.33 (h is the thickness of the dome). The varied parameter  was 
the displacement w0 of the point at which the force was applied. The magnitude of the force was calculated 
during solution of the problem. Axisymmetric equilibrium forms of the rigidly fixed dome were determined 
for successive values of the varied parameter. 

The calculated nonlinear dependence of the load Q versus the displacement w0 is shown by curve 3 
in Fig. 1, where Q0 = Dh2/b. Curves 1 and 2 show the linear and quadratic approximations of the solution, 
respectively. One can see that the both widely used truncated models lose accuracy as the displacement w0 
increases. The calculations were carried out on an IBM PC 386. 
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